The new features are the hi16/lo16 and ha16/lo16 syntax for
relocations, and the extended mnemonics like "blr".
Use ha16/lo16 to load some double floats with 2 instructions (lis/lfd)
instead of 3 (lis/ori/lfd).
Use the extended names for branches, comparisons, and bit rotations,
so I can more easily read the code. The new names often encode the
same machine instructions as the old names, except in a few places
where I changed the instructions.
Stop using andi. when we don't need to set cr0. In inn.s, I change
andi. to extrwi to extract the same bits. In los.s and sts.s, I
change "andi. r3, r3, ~3" to "clrrwi r3, r3, 2". This avoids setting
cr0 and also stops clearing the high 16 bits of r3.
In csa.s, los.s, sts.s, I change some comparisons and right shifts
from signed to unsigned (cmplw, cmplwi, srwi), because the sizes are
unsigned. In inn.s, the right shift can be signed (sraw) or unsigned
(srw), but I use srw because we don't need the carry bit.
In fef8.s, I save an instruction by using rlwinm instead of addis/andc
to rlwinm to clear a field. The code no longer kills r7. In both
fef8.s and fif8.s, I remove the list of killed registers.
Also remove some whitespace from ends of lines.
possible values. Add the PowerPC ncg and mcg backend support to let the test
actually run, including modifying a bunch of PowrePC libem functions so that
they can be called from both ncg and mcg.
This provides and, ior, xor, com, zer, set, cms when defined($1) and
ior, set when !defined($1). I don't provide the other operations
!defined($1) because our Modula-2 compiler hasn't used them.
I wrote a Modula-2 example in
https://gist.github.com/kernigh/add79662bb3c63ffb7c46d01dc8ae788
Put a dummy comment in mach/powerpc/libem/build.lua so git checkout
will touch that file. Without the touch, the build system doesn't see
the new *.s files.
corresponding invocation in the ncg table so the same helpers can be used for
both mcg and ncg. Add a new IR opcode, FARJUMP, which jumps to a helper
function but saves volatile registers.
This fixes the SIGILL (illegal instruction) in startrek when firing
phasers. The 32-bit processors in my PowerPC Mac and in QEMU don't
have fctid, a 64-bit instruction.
I got the idea from mach/proto/fp/fif8.c to extract the exponent,
clear some bits to get an integer, then subtract the integer from
the original value to get the fraction.
In EM, fef splits a float into exponent and fraction. The old C code,
given an infinite float, got stuck in an infinite loop. The new
assembly code doesn't loop; it extracts the IEEE exponent.
GNU as has "la %r4,8(%r3)" as an alias for "addi %r4,%r3,8", meaning
to load the address of the thing at 8(%r3). Our 'la', now 'li32',
makes an addis/ori pair to load an immediate 32-bit value. For
example, "li32 r4,23456789" loads a big number.
Inspired by the sparc code (mach/sparc/libem/lar.s). My powerpc code
might still have bugs, but it's enough for examples/hilo.mod to work.
May need to 'make clean' or touch a build.lua file, so ackbuilder can
notice the new lar4.s and sar4.s files and build them.
calculated incorrectly because of overflow errors.
Replace it with an extended RELOPPC relocation which understands addis/ori
pairs; add an la pseudoop to the assembler which generates these and the
appropriate relocation. Make good.
--HG--
branch : dtrg-experimental-powerpc-branch