Stripped down TinyCC fork for StupidOS
Currently tcc does not use lazy binding. It puts all relocations in the RELX section and solve them all at startup. This was not working on bsd. tcc.h: - New RELPLT_SECTION_FMT for plt relocations - New entry relocplt in struct Section tccelf.c: - put_elf_reloca: put R_JMP_SLOT in relocplt section - build_got_entries*: Use two passes because R_JMP_SLOT and R_GLOB_DAT can not be intermixed on some targets (arm, arm64) - layout_sections: Calculate correct size relocplt section for DT_ values. Make sure relocplt is last - fill_dynamic: Add DT_ values when got is filled move DT_VERSYM because dynamic linker cannot handle it standone - Add note section for NetBSD arm-link.c/arm64-link.c/i386-link.c/riscv64-link.c/x86_64-link.c: - fill got table with pointer to plt section or symbol value in case of TCC_OUTPUT_MEMORY arm-link.c/arm64-link.c: - fix offset first plt entry i386-link.c/x86_64-link.c: - use correct reloc entry - use relofs - sizeof (ElfW_Rel) because the reloc is already done lib/bcheck.c: - no __libc_freeres on FreeBSD and NetBSD tests/Makefile: - Add -fno-stack-protector for OpenBSD tests/tests2/Makefile: - disable 106_pthread/114_bound_signal |
||
---|---|---|
examples | ||
include | ||
lib | ||
tests | ||
win32 | ||
.gitignore | ||
arm-asm.c | ||
arm-gen.c | ||
arm-link.c | ||
arm64-gen.c | ||
arm64-link.c | ||
c67-gen.c | ||
c67-link.c | ||
Changelog | ||
CodingStyle | ||
coff.h | ||
configure | ||
conftest.c | ||
COPYING | ||
elf.h | ||
i386-asm.c | ||
i386-asm.h | ||
i386-gen.c | ||
i386-link.c | ||
i386-tok.h | ||
il-gen.c | ||
il-opcodes.h | ||
libtcc.c | ||
libtcc.h | ||
Makefile | ||
README | ||
RELICENSING | ||
riscv64-asm.c | ||
riscv64-gen.c | ||
riscv64-link.c | ||
stab.def | ||
stab.h | ||
tcc-doc.texi | ||
tcc.c | ||
tcc.h | ||
tccasm.c | ||
tcccoff.c | ||
tccelf.c | ||
tccgen.c | ||
tcclib.h | ||
tccmacho.c | ||
tccpe.c | ||
tccpp.c | ||
tccrun.c | ||
tcctok.h | ||
tcctools.c | ||
texi2pod.pl | ||
TODO | ||
USES | ||
VERSION | ||
x86_64-asm.h | ||
x86_64-gen.c | ||
x86_64-link.c |
Tiny C Compiler - C Scripting Everywhere - The Smallest ANSI C compiler ----------------------------------------------------------------------- Features: -------- - SMALL! You can compile and execute C code everywhere, for example on rescue disks. - FAST! tcc generates optimized x86 code. No byte code overhead. Compile, assemble and link about 7 times faster than 'gcc -O0'. - UNLIMITED! Any C dynamic library can be used directly. TCC is heading toward full ISOC99 compliance. TCC can of course compile itself. - SAFE! tcc includes an optional memory and bound checker. Bound checked code can be mixed freely with standard code. - Compile and execute C source directly. No linking or assembly necessary. Full C preprocessor included. - C script supported : just add '#!/usr/local/bin/tcc -run' at the first line of your C source, and execute it directly from the command line. Documentation: ------------- 1) Installation on a i386/x86_64/arm/aarch64/riscv64 Linux/macOS/FreeBSD/OpenBSD hosts. ./configure make make test make install Notes: For OpenBSD and FreeBSD, gmake should be used instead of make. For Windows read tcc-win32.txt. makeinfo must be installed to compile the doc. By default, tcc is installed in /usr/local/bin. ./configure --help shows configuration options. 2) Introduction We assume here that you know ANSI C. Look at the example ex1.c to know what the programs look like. The include file <tcclib.h> can be used if you want a small basic libc include support (especially useful for floppy disks). Of course, you can also use standard headers, although they are slower to compile. You can begin your C script with '#!/usr/local/bin/tcc -run' on the first line and set its execute bits (chmod a+x your_script). Then, you can launch the C code as a shell or perl script :-) The command line arguments are put in 'argc' and 'argv' of the main functions, as in ANSI C. 3) Examples ex1.c: simplest example (hello world). Can also be launched directly as a script: './ex1.c'. ex2.c: more complicated example: find a number with the four operations given a list of numbers (benchmark). ex3.c: compute fibonacci numbers (benchmark). ex4.c: more complicated: X11 program. Very complicated test in fact because standard headers are being used ! As for ex1.c, can also be launched directly as a script: './ex4.c'. ex5.c: 'hello world' with standard glibc headers. tcc.c: TCC can of course compile itself. Used to check the code generator. tcctest.c: auto test for TCC which tests many subtle possible bugs. Used when doing 'make test'. 4) Full Documentation Please read tcc-doc.html to have all the features of TCC. Additional information is available for the Windows port in tcc-win32.txt. License: ------- TCC is distributed under the GNU Lesser General Public License (see COPYING file). Fabrice Bellard.