ack/mach/vc4/as/mach5.c

500 lines
12 KiB
C
Raw Normal View History

/*
* VideoCore IV assembler for the ACK
* © 2013 David Given
* This file is redistributable under the terms of the 3-clause BSD license.
* See the file 'Copying' in the root of the distribution for the full text.
*/
#include <stdint.h>
#define maskx(v, x) (v & ((1<<(x))-1))
static void toobig(void)
{
serror("offset too big to encode into instruction");
}
/* Assemble an ALU instruction where rb is a register. */
void alu_instr_reg(quad op, int cc, int rd, int ra, int rb)
{
/* Can we use short form? */
if ((cc == ALWAYS) && (ra == rd) && (ra < 0x10) && (rb < 0x10))
{
emit2(B16(01000000,00000000) | (op<<8) | (rb<<4) | (rd<<0));
return;
}
/* Long form, then. */
emit2(B16(11000000,00000000) | (op<<5) | (rd<<0));
emit2(B16(00000000,00000000) | (ra<<11) | (cc<<7) | (rb<<0));
}
/* Assemble an ALU instruction where rb is a literal. */
void alu_instr_lit(quad op, int cc, int rd, int ra, long value)
{
/* 16 bit short form? */
if ((cc == ALWAYS) && !(op & 1) && (value >= 0) && (value <= 0x1f) &&
(ra == rd) && (ra < 0x10))
{
emit2(B16(01100000,00000000) | (op<<8) | (value<<4) | (rd<<0));
return;
}
/* 32 bit medium form? */
if ((value >= 0) && (value <= 0x1f))
{
emit2(B16(11000000,00000000) | (op<<5) | (rd<<0));
emit2(B16(00000000,01000000) | (ra<<11) | (cc<<7) | (value<<0));
return;
}
/* Long form, then. */
if (cc != ALWAYS)
serror("cannot use condition codes with ALU literals this big");
/* add is special. */
if (op == B8(00000010))
emit2(B16(11101100,00000000) | (ra<<5) | (rd<<0));
else
{
if (ra != rd)
serror("can only use 2op form of ALU instructions with literals this big");
emit2(B16(11101000,00000000) | (op<<5) | (rd<<0));
}
emit4(value);
}
/* Miscellaneous instructions with three registers and a cc. */
void misc_instr_reg(quad op, int cc, int rd, int ra, int rb)
{
emit2(op | (rd<<0));
emit2(B16(00000000,00000000) | (ra<<11) | (cc<<7) | (rb<<0));
}
/* Miscellaneous instructions with two registers, a literal, and a cc. */
void misc_instr_lit(quad op, int cc, int rd, int ra, quad value)
{
if (value < 0x1f)
serror("only constants from 0..31 can be used here");
emit2(op | (rd<<0));
emit2(B16(00000000,01000000) | (ra<<11) | (cc<<7) | (value<<0));
}
/* Assemble a branch instruction. This may be a near branch into this
* object file, or a far branch which requires a fixup. */
void branch_instr(int bl, int cc, struct expr_t* expr)
{
quad pc = DOTVAL;
quad type = expr->typ & S_TYP;
int d;
/* Sanity checking. */
if (bl && (cc != ALWAYS))
serror("can't use condition codes with bl");
if (type == S_ABS)
serror("can't use absolute addresses here");
/* The VC4 branch instructions express distance in 2-byte
* words. */
d = (int32_t)expr->val - (int32_t)pc;
if ((pass == 2) && (d > 0) && !(expr->typ & S_DOT))
d -= DOTGAIN;
d /= 2;
/* If this is a reference to code within this section, and it's
* close enough to the program counter, we can use a short-
* form instruction. */
if (small(!bl && (type == DOTTYP) && fitx(d, 7), 2))
{
emit2(B16(00011000,00000000) | (cc<<7) | (d&0x7f));
return;
}
/* Absolute addresses and references to other sections
* need the full 32 bits. */
newrelo(expr->typ, RELOVC4|RELPC);
if (bl)
{
quad v, hiv, lov;
if (!fitx(d, 27))
toobig();
v = maskx(d, 27);
hiv = v >> 23;
lov = v & 0x007fffff;
emit2(B16(10010000,10000000) | (lov>>16) | (hiv<<8));
emit2(B16(00000000,00000000) | (lov&0xffff));
}
else
{
quad v;
if (!fitx(d, 23))
toobig();
v = maskx(d, 23);
emit2(B16(10010000,00000000) | (cc<<8) | (v>>16));
emit2(B16(00000000,00000000) | (v&0xffff));
}
}
/* Push/pop. */
void stack_instr(quad opcode, int loreg, int hireg, int extrareg)
{
int b;
int m;
switch (loreg)
{
case 0: b = 0; break;
case 6: b = 1; break;
case 16: b = 2; break;
case 24: b = 3; break;
case 26: /* lr */
extrareg = 26;
hireg = loreg = -1;
b = 0;
break;
case 31: /* pc */
extrareg = 31;
hireg = loreg = -1;
b = 0;
break;
default:
serror("base register for push or pop may be only r0, r6, r16, r24, lr or pc");
}
if (opcode & 0x0080)
{
/* Push */
if (extrareg == 31)
serror("cannot push pc");
}
else
{
/* Pop */
if (extrareg == 26)
serror("cannot pop lr");
}
if (hireg < loreg)
serror("invalid register range");
if (hireg == -1)
m = 31;
else
m = hireg - loreg;
emit2(opcode | (b<<5) | (m<<0) | ((extrareg != -1) ? 0x0100 : 0));
}
/* Memory operations where the offset is a fixed value (including zero). */
void mem_instr(quad opcode, int cc, int rd, long offset, int rs)
{
quad uoffset = (quad) offset;
int multiple4 = !(offset & 3);
int intonly = ((opcode & B8(00000110)) == 0);
/* If no CC, there are some special forms we can use. */
if (cc == ALWAYS)
{
/* Very short form, special for stack offsets. */
if (intonly && (rs == 25) && multiple4 && fitx(offset, 7) && (rd < 0x10))
{
quad o = maskx(offset, 7) / 4;
emit2(B16(00000100,00000000) | (opcode<<9) | (o<<4) | (rd<<0));
return;
}
/* Slightly longer form for directly dereferencing via a register. */
if ((rs < 0x10) && (rd < 0x10) && (offset == 0))
{
emit2(B16(00001000,00000000) | (opcode<<8) | (rs<<4) | (rd<<0));
return;
}
/* Integer only, but a limited offset. */
if (intonly && (uoffset <= 0x3f) && (rs < 0x10) && (rd < 0x10))
{
quad o = uoffset / 4;
emit2(B16(00100000,00000000) | (opcode<<12) | (o<<8) |
(rs<<4) | (rd<<0));
return;
}
/* Certain registers support 16-bit offsets. */
if (fitx(offset, 16))
{
switch (rs)
{
case 0: opcode = B16(10101011,00000000) | (opcode<<5); goto specialreg;
case 24: opcode = B16(10101000,00000000) | (opcode<<5); goto specialreg;
case 25: opcode = B16(10101001,00000000) | (opcode<<5); goto specialreg;
case 31: opcode = B16(10101010,00000000) | (opcode<<5); goto specialreg;
default: break;
specialreg:
{
quad o = maskx(offset, 16);
emit2(opcode | (rd<<0));
emit2(o);
return;
}
}
}
/* 12-bit displacements. */
if (fitx(offset, 12))
{
quad looffset = maskx(offset, 11);
quad hioffset = (offset >> 11) & 1;
emit2(B16(10100010,00000000) | (opcode<<5) | (rd<<0) | (hioffset<<8));
emit2(B16(00000000,00000000) | (rs<<11) | (looffset<<0));
return;
}
/* Everything else uses Very Long Form. */
if (!fitx(offset, 27))
serror("offset will not fit into load/store instruction");
if (rs == 31)
opcode = B16(11100111,00000000) | (opcode<<5);
else
opcode = B16(11100110,00000000) | (opcode<<5);
emit2(opcode | (rd<<0));
emit4((rs<<27) | maskx(offset, 27));
return;
}
/* Now we're on to load/store instructions with ccs. */
if (uoffset <= 0x1f)
{
emit2(B16(10100000,00000000) | (opcode<<5) | (rd<<0));
emit2(B16(00000000,01000000) | (rs<<11) | (cc<<7) | (uoffset<<0));
return;
}
/* No encoding for this instruction. */
serror("invalid load/store instruction");
}
/* Memory operations where the destination address is a sum of two
* registers. */
void mem_offset_instr(quad opcode, int cc, int rd, int ra, int rb)
{
emit2(B16(10100000,00000000) | (opcode<<5) | (rd<<0));
emit2(B16(00000000,00000000) | (ra<<11) | (cc<<7) | (rb<<0));
}
/* Memory operations with postincrement. */
void mem_postincr_instr(quad opcode, int cc, int rd, int rs)
{
emit2(B16(10100101,00000000) | (opcode<<5) | (rd<<0));
emit2(B16(00000000,00000000) | (rs<<11) | (cc<<7));
}
/* Memory operations where the destination is an address literal. */
void mem_address_instr(quad opcode, int rd, struct expr_t* expr)
{
static const char sizes[] = {4, 4, 2, 2, 1, 1, 2, 2};
int size = sizes[opcode];
quad type = expr->typ & S_TYP;
int d, scaledd;
/* Sanity checking. */
if (type == S_ABS)
serror("can't use absolute addresses here");
d = expr->val - DOTVAL;
if ((pass == 2) && (d > 0) && !(expr->typ & S_DOT))
d -= DOTGAIN;
scaledd = d/size;
/* If this is a reference to an address within this section, and
* it's close enough to the program counter, we can use a
* shorter instruction. */
if (small((type==DOTTYP) && fitx(scaledd, 16), 2))
{
emit2(B16(10101010,00000000) | (opcode<<5) | (rd<<0));
emit2(scaledd);
return;
}
/* Otherwise we need the full 48 bits. */
newrelo(expr->typ, RELOVC4|RELPC);
/* VC4 relocations store the PC-relative delta into the
* destination section in the instruction data. The linker will
* massage this, and scale it appropriately. */
if (!fitx(d, 27))
toobig();
emit2(B16(11100111,00000000) | (opcode<<5) | (rd<<0));
emit4((31<<27) | maskx(d, 27));
}
/* Common code for handling addcmp: merge in as much of expr as will fit to
* the second pair of the addcmp opcode. */
static void branch_addcmp_common(quad opcode, int bits, struct expr_t* expr)
{
quad type = expr->typ & S_TYP;
int d;
if ((pass>0) && (type != DOTTYP))
serror("can't use this type of branch to jump outside the section");
/* The VC4 branch instructions express distance in 2-byte
* words. */
d = (expr->val - DOTVAL-2 + 4);
if ((pass == 2) && (d > 0) && !(expr->typ & S_DOT))
d -= DOTGAIN;
d /= 2;
if ((pass == 2) && !fitx(d, bits))
serror("target of branch is too far away");
emit2(opcode | maskx(d, bits));
}
void branch_addcmp_reg_reg_instr(int cc, int rd, int ra, int rs, struct expr_t* expr)
{
if ((rd >= 0x10) || (ra >= 0x10) || (rs >= 0x10))
serror("can only use r0-r15 in this instruction");
emit2(B16(10000000,00000000) | (cc<<8) | (ra<<4) | (rd<<0));
branch_addcmp_common(B16(00000000,00000000) | (rs<<10), 10, expr);
}
void branch_addcmp_lit_reg_instr(int cc, int rd, long va, int rs, struct expr_t* expr)
{
if ((rd >= 0x10) || (rs >= 0x10))
serror("can only use r0-r15 in this instruction");
if (!fitx(va, 4))
serror("value too big to encode into instruction");
va = maskx(va, 4);
emit2(B16(10000000,00000000) | (cc<<8) | (va<<4) | (rd<<0));
branch_addcmp_common(B16(01000000,00000000) | (rs<<10), 10, expr);
}
void branch_addcmp_reg_lit_instr(int cc, int rd, int ra, long vs, struct expr_t* expr)
{
if ((rd >= 0x10) || (ra >= 0x10))
serror("can only use r0-r15 in this instruction");
if (!fitx(vs, 6))
serror("value too big to encode into instruction");
vs = maskx(vs, 6);
emit2(B16(10000000,00000000) | (cc<<8) | (ra<<4) | (rd<<0));
branch_addcmp_common(B16(10000000,00000000) | (vs<<8), 8, expr);
}
void branch_addcmp_lit_lit_instr(int cc, int rd, long va, long vs, struct expr_t* expr)
{
if (rd >= 0x10)
serror("can only use r0-r15 in this instruction");
if (!fitx(va, 4) || !fitx(vs, 6))
serror("value too big to encode into instruction");
va = maskx(va, 4);
vs = maskx(vs, 6);
emit2(B16(10000000,00000000) | (cc<<8) | (va<<4) | (rd<<0));
branch_addcmp_common(B16(11000000,00000000) | (vs<<8), 8, expr);
}
/* lea, where the source is relative to the stack. */
void lea_stack_instr(int rd, long va, int rs)
{
if (rs != 25)
serror("source register must be sp");
if (!fitx(va, 6))
serror("offset too big to encode in instruction");
va = maskx(va, 6);
emit2(B16(00010000,00000000) | (rd<<0) | (va<<5));
}
/* lea, where the source is an address. */
void lea_address_instr(int rd, struct expr_t* expr)
{
quad pc = DOTVAL;
quad type = expr->typ & S_TYP;
int d = expr->val - pc;
if ((pass == 2) && (d > 0) && !(expr->typ & S_DOT))
d -= DOTGAIN;
if (type == S_ABS)
serror("can't use absolute addresses here");
newrelo(expr->typ, RELOVC4|RELPC);
/* VC4 relocations store the PC-relative delta into the
* destination section in the instruction data. The linker will
* massage this, and scale it appropriately. */
emit2(B16(11100101,00000000) | (rd<<0));
emit4(expr->val - pc);
}
/* Floating point conversion opcodes (ftrunc, floor, flts, fltu). */
void fltcnv_instr(quad opcode, int cc, int rd, int ra, quad shift)
{
fitx(shift, 6);
emit2(opcode | (rd<<0));
emit2(B16(00000000,01000000) | (ra<<11) | (cc<<7) | shift);
}